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Competition between pattern recall and sequence 
processing in a neural network storing correlated patterns 

W Whyte, D Shemngton and A C C Coolen 
‘Theoretical Physics, Depamnent of Physics, 1 Keble Road, Oxford OX1 3NP, UK 

Received 28 September 1994, in final form 16 March 1995 

Abstract We investigate the effects on a network that stores a sequenEe of patterns without 
time delays of introducing patterns that are carrelated in a way that depends only on their 
separation from each other in the sequence. We demonstrate that with a carefully chosen form 
for the synaptic matrix, the introduction of these correlations can, under certain circumstances. 
aid the recall of the individual panems while still preserving the limit-cycle behaviour of the net. 

1. Introduction 

Models of neural networks have been a fruitful source of insight into the possible structure 
of associatiye memories. Two of the most common simplifications have been to assume 
symmetric, instantaneous synaptic interactions between the neurons, and to use king neurons 
whose state can only take the values {-I, 1) (see, for example, Hopfield 111, Amit et 
a1 121). An attractor neural network with a symmetric synaptic matrix, operating under 
the commonly used dynamic laws, will always end up in either a fixed point (under 
sequential or parallel dynamics) or a period-2 limit cycle (under parallel dynamics). Clearly, 
while these models are useful for studying static memories, they need to be adapted 
to make possible a study of dynamic memories, or, ,memories with a~ more complicated 
structure. 

Two main approaches have emerged to the problem of hying to store memories that 
change over time. One is to assume a distribution of transmission delays in the synaptic 
interactions (as was done by Kleinfeld [3] and Sompolinsky and Kanter [4]). By using a 
model that employed a temporal symmetry of the synaptic matrix, Herz et d[5J have been 
able to derive many useful results, such as the storage capacity and the phase diagram of 
their Hebb-like model. The other approach, which we follow here, is to preserve the concept 
of interactions being instantaneous and to see what kinds of behaviour can be obtained using 
only the asymmetq of the synaptic matrix. Buhmann and Schulten [6] showed that it was 
possible to obtain cyclic behaviour in a neural network at a finite operating temperature, and 
Nakamura and Nishimori [7] performed a detailed analysis on a sparse-coded network which 
found that this cycling behaviour persisted even at zero temperature. More recently, Coalen 
and Sherrington [8] have investigated competition between a sequenceprocessing term and 
a pattern-storing term in a neural network without transmission delays or sparse coding. 

In this paper, we study the effects of introducing correlations between patterns to a 
network that features competition between pattern storage and sequence processing without 
using transmission delays. This network displays limit-cycle behaviour in a large region 
of the phase diagram. From a practical point of view, the most interesting and useful 
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behaviour of the network is when it is in a stable limit cycle with the individual pattern 
overlaps taking a wide range of values. For reasons to be given, we expect correlations 
to exist between pattems in a sequence in a biological network; we are therefore strongly 
motivated to see if their effects will be constructive or destructive on recall of the sequence 
as a whole. 

The first of the networks that we study is very similar to that analysed (without 
correlations) by Coolen and Shemngton 181, henceforth referred to as CS. Here we show that 
the effect of the correlations, in combination with the competing aspects of the dynamics, 
is to tend to ‘smear out’ the network into a state of equal overlap with all the patterns. 
The second network is more reminiscent of those in [6, 71. Here, when we introduce 
an extra term into the synaptic matrix designed to suppress this symmetric mixture state, 
we discover that increasing the correlations will increase the range of values that the 
individual pattem overlaps take and improve the robustness of the sequence processing 
behaviour. This improvement is geatest for non-zero temperature and for a network 
intermediate between the two extremes of pure sequence processing and pure Hebbian 
pattern storage. 

We will be looking at patterns whose total ‘magnetization’ is zero, but which are 
positively correlated with the patterns that come close to them in the stored sequence. 
We take the correlation to decrease with the separation of the two patterns in the sequence, 
and to only depend on that separation. This form of correlation is inspired from several 
different sources. It is intuitively appealing that the patterns in a remembered sequence will 
be correlated in a way that depends on their separation, if only because, since things in the 
real world change continuously, one stimulus will inevitably have some similarity to the ones 
immediately before and after it. Secondly, experiments on monkeys performed by Miyashita 
er ai [9-111 have demonstrated that if they are presented with a set sequence of stimuli many 
times, then subsequently presenting them with a stimulus from the sequence will result in 
their recalling not just that stimulus, but its neighbours in the sequence. This phenomenon 
was modelled by Griniasty etal [12] assuming that the stored pattems corresponding to the 
stimuli were uncorrelated but that the neural interactions modify themselves so as to recall 
the patterns that have become associated with the presented one. Here, we are inspired by 
this result to consider the case in which the stored patterns are correlated. Finally, many of 
the results derived in CS only depended on the matrix of correlations of the patterns being 
Toeplitz. This paper can therefore be regarded in part as a generalization of this previous 
work. 

This paper is organized as follows. In section 2 we define the form of the synaptic 
matrix and of the correlations. In section 3 we investigate the effects of correlations on 
the synaptic matrix of CS, and show that the effect of increasing correlations is to decrease 
both the area of the phase diagram in which limit-cycle behaviour will take place and the 
ability of the network to distinguish ,between patterns. In section 4 we look at a slightly 
different synaptic matrix, and show that in this case increasing the correlations improves 
the quality of the limit-cycle behaviour in certain circumstances. 

2. Construction of the network and correlations 

2.1. Synaptic matrix and dynamic laws 

Our model is an king spin neural network of N spins si E (-1, 11, corresponding to neuron 
i being at rest or firing, respectively. We wish to study a system that has learned a given 
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set of patterns 5’’ E (-1, ,u = I , .  . ., p ,  via synapses 

The quantities of interest are the macroscopic overlaps 

whose evolution we wish to study under parallel (synchronous) dynamics and sequential 
(asynchronous) dynamics. In both these cases we take p << 

For the case of a parallel (Markov) process, all of the neurons are updated simultaneously 
following the rule P[si(r  + 1)l = $(l + si([ + 1) tanh[p xi Jijs , ( t ) ] ) .  The evolution in 
time of the qu’s in the thermodynamic limit is governed by the set of coupled nonlinear 

as N -+ 03. 

mappings 

&+I = ($ tanh[B$ . 
where the average is defined as 

(@(g))g = P($)Q($)  with 
g€(-l,lP 

g, Es (5; . . . t:) . 

(3) 

(4) 
Under sequential dynamics, the individua eurons are updated one at a time a random 

order, according to the rule P(s , )  = i ( l  +si tanh[p E, Jjjs j ] ) .  If we take the duration of 
a single iteration to scale as $, then in the thermodynamic limit the behaviour of the 
macroscopic overlaps qfl is governed by the set of coupled nonlinear differential equations 
[I31 

The fixed points of either dynamics will satisfy 

qw = (L w h [ B g .  A3)g . (6) 
The for& of A under investigation here are 

(9 
(ii) A,, US,, + $ m S w p  - i-S;# 

A,, = USPP + (1 - ~ ) S g p  
(7) 

where S,, 
The parameter U E [O, I] allows us to interpolate smoothly between the simple Hopfield 

model (v = 1) and sequence processing models (U = 0). The forms of the coefficients 
of S and S+ are chosen to obtain a value for the critical temperature for the existence of 
non-hivial fixed-point solutions that is independent of the value of v. The effect of the first 
form of A on a system in a pure state p will be to move it towards the state p+ 1; the effect 
of the second form of A on the same system will be to move it towards a mixture of p + 1 
and the inverse of p - 1 .  We therefore refer to the first A as ‘forward-propagating’ and to 
the second as ’double-propagating’; to distinguish them we call the latter A’ hereafter. 

For the forward-propagating case storing uncorrelated patterns and with parallel 
dynamics, CS obtained the phase diagram shown in figure 1, with similar behaviour for 
other p values. It contains six distinct regions (note that our notation differs from theirs). 

S,.,,+l ( p  : mod p ) .  
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Figure 1. The phase d i a p m  as determined by CS for 
p = 10. The labels refer IO the phases described in the 
test. 

For T > 1 there is a paramagnetic phase (P), where the trivial fixed point will be the 
only fixed point of the dynamics. 
At T,, = 1 2 T 2 T , , ( w )  there is a phase (S) in which the symmetric fixed point 
{ = q*( l ,  1, 1, . . . , 1) is the only attractor of the dynamics. 
At &(U) 2 T 2 T,(u) the system exhibits limit-cycle behaviour, whose period 
depends on the value of U. There are two regions within this temperature range, C 
and C’; within the region C’ the symmetric fixed-point solution is also stable, whereas 
within C it is unstable. Their boundary is Tc.c(w). 
For T c T,(w) the system is in a ‘retrieval’ phase (R), in which there are stable 
non-symmetric fixed points and recall of individual patterns is possible. 
There is also a corresponding phase R’ (T -= T,,) in which the system displays limit- 
cycle behaviour with period p ,  independent of the value of U. 

Each of the critical temperature lines is symmetric under U + 1 - U. 
We might expect that the structure of the phase diagram for parallel dynamics with the 

matrix A and correlated patterns will be qualitatively the same as the structure of this phase 
diagram, but with altered parameters. In the case of the matrix A‘ it is more difficult to 
predict the detailed structure of the phase diagram a priori. We would expect the phases 
P, S, C and R to be observable. However, we would not expect to see an R’ phase, since 
this phase arises as a result of the symmetry between U and 1 - U under parallel dynamics 
for the matrix A, and this symmetry does not exist for A’. These expectations are, in fact, 
borne out. 

2.2. Pattern distribution and correlation 

In this paper we take (e*) = 0, and define the correlation matrix C,, (pt”). The 
patterns are not spatially correlated within themselves or biased; the correlations only enter 
as a relationship between the bits of different patterns on the same site i. We note that Cp, 
is symmetric by definition, and require it to have the following additional properties: 

(i) C,, = CA, where A = Ip -~hl (C is translation-invariant in the space of patterns). C 

(ii) C,, is positive in all its entries. 
(iii) C,, decreases monotonic ally^ from C,, (= 1) to C,.,+p,z, and thereafter (by the 

will therefore commute with both A and A’. 

symmetry requirement) increases monotonically from Cp.p+p,z to C,,+,-i. 
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When performing numerical simulations, and in order to have a singleparameter 
chyacterization of the whole distribution, we will assume that the probability distribution 
P ( c )  is of a form corresponding to the thermal distribution of a periodic p-site one- 
dimensional nearest-neighbour Ising ferromagnet, 

This gives a correlation matrix of the form 

rl" + tf-" 
1 +t; 

c* = 

with t ,  = tanh(J) E [-1, 11, which satisfies the conditions above, provided that J 

the correlation between nearest neighbours. 

0. 
The parameter we will generally use as a measure of the correlations is c = (&Jp+l )~ .  

2.3. Eigenvectors and eigenvalues 

As in C S ,  we define a set of vectors ( In) )  which fontrim eigenbasis in p-dimensional space 
for the matrices A, S and C 

For both the A's to be studied here, a, is real only if n = 0 or (if p is even) n = p/2. With 
regard to C, we note that c. = cP-.. that c, is always real, and that max, c,, = CO 7 EA CPh. 
When p is even, min, c, = cp/z = Ci(-1)'Cpi. 

We can write the symmetric fixed point in this basis as 

; =;+ =qfIO). (12) 

If we take the correlations to be of the Ising ferromagnet type, the c,s become 

In this case, it can be seen that the eigenvalues c, also obey the condition c,+l < c,, so 
long as t ,  > 0 and n + 1 < p / 2 .  In the limit f, + 0, c, -+ IVn;  in the limit tJ -+ 1, 
co + p and c. + 0, Vn # 0. 

Eigenvalues of any matrix with respect to the basis [In)} are denoted by latin subscripts; 
references to a particular pattern are denoted by Greek subscripts. We will also find it useful 
to define - 

{In) = x, . (14) 
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3. The forward-propagating A-matrix 

In this section we take 

A, E ~6,, i (1 - u)S,, 

so 
Aln)=a , ln)=[u+( l -u)e-  Zir in lp ]  i n )  

This is the case described for uncorrelated patterns by CS. For p = 2, this produces a 
symmetric synaptic matrix which may be analysed completely. We then perform as much 
analysis as possible on the p > 2 case, and follow this up with numerical simulations for 
p = 10. 

3.1. The toy problem: the symmetric case p = 2 

For p = 2, the probability distribution has the simple form 

P [ t ' ,  t*I = +cl+ t ' t * C ) .  (17) 
If we introduce the variables z*, 
fixed-point equations 

q1 f 42, the dynamic equations decouple, yielding the 

z ; ~  = (1 + c)  tanh[p~;~] zTp = (1 - c )  tanh[B(Zu - I )Z/~]  (18) 
which, in turn, imply the critical temperatures below which non-zero values of z* are 
possible: 

(19) 

We see that z-  will only be a non-zero fixed point if U > 0.5. However, if U < 0.5 and 
T < T,'(z-) = (1 - c)(l - Zu),  then under parallel dynamics z- can oscillate between 
k z -  - (1 - c) tanh[B(l - 2u)z;,']. We can thus identify four of the six phases from the 
general phase diagram: 

For T > T,(z+) = (1 + c) we arein the paramagnetic phase P. 
For 1 + c > T > (1 - c)(12u - ll), z+ is non-zero and z -  is zero, and we are in the 
symmetric fixed-point phase S. There is no C phase. 
For T < (1 - c)(12u - 11) we are in either R or R', depending on whether U is greater 
or less than 0.5, respectively. 

The effect of increasing the correlation c for p = 2 is, therefore, to decrease the size of the 
regions P, R and R'. We would also expect to observe this at higher values of p.  However, 
this toy model casts no light on the effect of increasing correlations on the relative sizes of 
regions S, C' and C. 

3.2. Analytic results for p > 2, parallel dynamics 

We first attempt to locate the critical temperature T,, for a transition from the paramagnetic 
phase to the symmetric fixed-point phase. An upper bound on this temperature is given 
by the critical temperature T, for the existence of non-zero solutions of the fixed-point 
equation (6). Using the methods of CS, and the fact that max, lanl and max. c, both occur 
at n = 0, we find that this temperature obeys 

T , ( Z + )  = 1 + c T,(z-) = (1 - c ) ( ~ u  - 1). 

fP - 

T < 4 max[(nICln) i (nlA+CAln)] = CA = CO. (20) 
A 
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The fact that this maximum occurs at n = 0 also indicates that the first type of non-trivial 
fixed point to become a solution of the dynamics is the symmetric fixed point, emphasizing 
that the temperature we are locating here is indeed Tps. 

A lower bound on T,, can be obtained by stability and bifurcation analysis of the trivial 
fixed point. The condition for a fixed point < to bifurcate under parallel dynamics is 

detll - gr({)Al = 0 where r p h  = (<+&(I - tanhZIB<A . GI))( . (21) 
The condition for local stability of a fixed point under parallel dynamics is 

Both these equations are to be solved simulkyeously with the fixed-point equation (6). 

becomes detll - BCAl = 0, or 
For the trivial fixed point, r({) = r(0) = C. The bifurcation equation therefore 

~;:CA;=T;. (23) 
Because T is real, we require the left-hand side of this equation to be real. This means that 
y' = In) where a, is real. The only values of n that satisfy this are n = 0 and, if p is even, 
n = p/2. These two solutions have associated with them the critical temperatures 

Tc(+ = qlo)) = CA F CO 
L, 

~~ ~ 

Tc(@ 5 qjp/2)) = ( 2 V  - 1) c ( - l ) A c A  (2W - 1 ) C p / ~  C CO. (24) 

On solving the stability equations for the trivial fixed point, we obtain, using the fact that 
r(6) = C, the condition 

A 

max la,lZcn < TZ + Tc(q = 6 becomes unstable) = CO. (25) 

We can conclude that at T = CO the trivial fixed point becomes unstable and bifurcates 
continuously to the symmetric fixed point. This fixes T,. 

We now attempt to determine TCec. A stability analysis may be performed on the 
symmetric fixed point in the same way as on the trivial fixed point. In this case we obtain 
the following form for r: 

It is evident that I?,,(+ +) will only depend on Ip - U[. It is also possible to express r ( i  +) 
in terms of the basis In): 

(28) 
gin). Since r(+ +) is symmetric, all the y,s will be real, as (28) shows explicitly. where x, 

It can also be seen that, except in the case where p + 00, we have 0 c y,, < c,Vn. 
This gives the following condition for ;+ to be stable: 

max[vZ n + (1 - w)' + 2w(1 - v)cos(~irn/p)]l'~y,, < T . (29) 
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U 
'0 0.2 0.4 0.6 0.8 1 

T 

0.8 

. : :  
0.6 

0.4 

0.2 

'0 . 0.2 0.4 0.6 0.8 1 
T 

Figure 2. (a) The t e m p e m  Ti- at which the pure antisymmetric fixed point i = q-lp/Z)  
becomes a fixed point for the dynamics, for p = IO and nearest-neighbour correlations of c = 
0 (full line). 0.2 (dotted line). 0.4 (short-broken line), 0.6 (long-broken line), 0.8 (chain line). 
(b) The temperature Tdc, dividing paameter space into the corresponding regions in which the 
symmetric fixed point is stable (S) and unstable 0 under parallel dynamics. 

This condition can be evaluated numerically, taking into account that the symmetric fixed 
point cannot become unstable due to fluctuations in the direction n = 0. We discover that 
the maximizing value of n under these conditions is n = 1, for the king-type correlations 
that we are using. 

Bifurcation analysis for the symmetric fixed point gives the following condition for a 
continuous bifurcation to take place: 

(30) yn[u + ( I  - u)e2"'"'P](nly) = T(nly). 
As before, any bifurcation must take place in a direction In), where U, is real. For the case 
of the symmetric fixed point the bifurcation may not be in the direction n = 0. Therefore, 
if p is odd there will be no bifurcation. If p is even, a bifurcation can take place in the 
direction of the antisymmetric fixed point, = 4'- = q-lp/2) at the temperature 

Tb = Y p / ~ ( 2 v  - 1). (31) 
However, numerical evaluation of this temperature shows it to be always below the 
temperature at which the symmetric fixed point becomes unstable. This demonstrates that 
when this fixed point becomes unstable it will not go continuously to another fixed-point 
solution but will instead go to a limit cycle. We therefore identify as T,, the temperature 
at which the symmetric fixed point becomes unstable, as given by the left-hand side of (29) 
with n = 1. 

Finally, we attempt to locate Tc,. It is not possible to do this explicitly, but the analysis 
of CS suggests that, for p even, T, will be bounded from above by the temperature at 
which the pure antisymmetric state, <-, becomes a possible fixed point of the dynamics. 
This temperature is given by TJ- = (2u - l)c,jz. Since a recall state must have a non-zero 
overlap with the antisymmetric state l p / 2 ) ,  it makes sense that this temperature should form 
an upper bound on the temperature below which recall states are found. 

If U c 0.5 we would expect to find period-p limit cycles below T = (1 - 2 u ) c p p  
We summarize the results of this section in figures 2(u) and (b), showing TG- and Tdc, 

respectively. 
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3.3. Numerical results for p = 10, parallel dynamics 

The dynamical laws described above, equation (3), were implemented numerically. These 
were not simulations on a finite-sized network but direct numerical iterations of the 
dynamics (3). Qualitatively, the phase diagram structure is as in figure 1, but with altered 
parameters. 

To simplify the discussion of the results we describe the system in terms of three 
variables, Qs, Qd and the period P, where 

and Qs, Qd denote theaymptotic values of these variables, Qs(oo) and Qd(C0). Along 
with the stability calculation of (29),  these^ are all we need to determine the area of the 
phase diagram that the system is in, as follows: 

In the paramagnetic region P, Q, and Qd are both zero. 
i In the symmehic fixed-point region S, Q, is non-zero and Qd is zero. 

In the limit-cycle regions C and C’, Qd and P are non-zero. These regions are 
distinguished by the stability of the symmetric solution (calculated analytically in (29)). 
In the retrieval region R, the system is at a fixed point with Qd # 0. 
In the period-p limit-cycle region R’, Qd is non-zero and the period P = p .  

The system was started in a ‘pure state’ (qfl = 1, 4.5, = CPU)  and run under the 
parallel dynamics (3). A small number of runs were undertaken from random starting 
positions. These seemed to confirm the result of CS that the asymptotic values of [ Q, 1 and 
Qd are independent of the initial q,’s, indicating an attractor basin covering all random 
and pure start states for each value of the control parameters ( p .  U, T ) .  As in CS, these 
implementations do not distinguish between the C and C’ regions, but yield cyclical solutions 
in both cases from the above start states. The C and C’ regions are distinguishable by 
implementations started from a state close to the symmetric fixed point. 

In all cases, the quantity used to measure the correlations was c, the correlation between 
neighbouring patterns in a sequence. 

The results can be summarized as follows: 

The value of T, decreases rapidly with increasing c. The boundary between R, R’ and 
C is marked not just by an abrupt change in the period P, as would be expected, but 
also by an abrupt drop in the asymptotic value of Qd. 

e Within the C and C’ phases, as c increases at constant (U, T ) ,  the asymptotic value of 
Qd in general decreases. At low temperatures, however, after entering the phase, Qd 
shows a slight increase with increasing c before abruptly dropping again. Any such 
sharp change in Qd does not always correspond to changes in the period. If T 5 0.15 
then the period P changes slightly with increasing c, first increasing and then decreasing 
(for U =- 0.5) or first decreasing and then increasing (for U e 0.5). 
Increasing c also decreases &. As T approaches T,? from below, Qd goes continuously 
to zero. 

i Within the S phase, as T increases at constant (c, U). Qs goes continuously to zero. 
e T,, is confirmed as CO. 

Figure 3, showing asymptotic values of Qd, P as a function of c for various values 
of T and U = 0.2, displays most of these features. There is a slight increase in Qd as 
c is increased near c - 0.3, for T = 0. Inspection of the raw qp’s shows that within 
this range the effect of increasing the correlation is to increase 4, for the pattem with the 
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Figure 3. Qd (lower curves, left-hand scale) and P (upper 
lines, right-hand scale), plotted against increasing c, for 
p = 10, U = 0.2, T E (0 (full clwe), 0.1 (doned 
curve), 0.2 (short-broken curve), 0.3 (long-broken curve). 
0.4 (chain curve)}. The system was swned from a state of 
overlap 1 with one panem and run under parallel dynamics. 
The sham transition in Ch and P mk.s the boundan of _. 

C rhe R region. 

I I 

Figure 4. (0) T,, found numerically for parallel dynamics with p = 10 and e = 0, 0.1,O.Z. 0.3 
(going from right to left). (b) &<, found numerically for parallel dynamics with p = IO and 
c = 0.0.2.0.4,0.6.0.8 (going from right to left). The doned lines are the corresponding lines 
on which the symmetric fixed point becomes unnrable for the same values of c, reproduced from 
figure Z(b) for e a ~ e  of comparison. 

second-highest overlap and decrease qfl for the pattem with the second-lowest overlap. This 
will increase the standard deviation of the distribution of overlaps, which is exactly what 
Qd measures. This increase in Qd therefore does not correspond to the form of improved 
retrieval behaviour discussed in the introduction. 

We conclude this section by presenting the values of T,? and Tcr obtained by this 
numerical study (figures 4(u) and (b)). These are to be compared with the figures obtained 
analytically, figures 2(a) and (b). We obtain close agreement at high values of c between 
the boundary of the S phase and the stability of the symmetric fixed point, indicating that as 
correlations increase the size of the C' region decreases rapidly. At lower values of c it is 
possible for limit-cycle behaviour to persist even when the symmetric fixed point is stable. 

The upper bound obtained analytically for existence of the rebieval phase R can be seen 
to be extremely loose. In fact, we find numerically that there is no R or R' phase at all for 
c > 0.336. 
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0.8 

0.6 

a 

Figure 5. The regions in which th symmetric fixed point 

for p = 10, with c = 0 (full curve). 0.2 (dotted curve). 
‘0 0.2 0.4 0.6 0.8 1 0.4 (shon-broken curve), 0.6 (long-broken curve), 0.8 (chain 

0.2 

is stable (S) and unstable (U) under sequential dynamics 

T curve). 

3.4. Sequential dynamics 

As found by CS in the case of uncorrelated patterns, sequential dynamics can also lead 
to l i t -cyc le  behaviour in the thermodynamic limit N + CO. However, numerical 
implementations of this system under sequential dynamics are far more expensive in terms 
of computer time than implementations of parallel dynamics. We therefore restrict this 
discussion to mentioning a few brief points of interest. 

The symmetry between v and 1 - v that exists for parallel dynamics does not exist for 
sequential dynamics. We therefore do not expect an R’ region of the phase diagram to exist. 

The stability properties of the trivial fixed point are the same under both parallel and 
sequential dynamics. 

The stability properties of the symmetric fixed point, however, show an interesting 
difference. We might expect that as c increases the temperature at which the symmetric 
fixed point becomes unstable would decrFse monotonically, as for parallel dynamics. This 
is the case for p odd. For p even and low values of U ,  on the other hand, as c is increased 
this critical temperature will first increase and then decrease. So there exists a small range 
of temperatures for which increasing the correlation will bring the system from the S phase 
to the C phase and then back to the S phase again. This is displayed in figure 5. Numerical 
implementations (starting from both the pure state and a state near the symmetric fixed 
point) confirm this result. 

4. The double-propagating A-matrix 

We now switch to look at the matrix A’ = u l  + i ~ m ( S  - St), in the hope that the 
antisymmetric aspects of this matrix will reduce the strength of the symmetric fixed point 
in the case of correlated patterns. This matrix is very similar to that studied in 16, 7, 141. 
These papers, however, looked at the case of very sparse coding so that no neuron was 
firing in more than one pattern. Here we are taking non-sparse coding (+xi = OVp) 
and a different form of correlations between patterns. 

We expect the phases P, S, C and R to exist for A’, as they existed for A; however, 
we do not expect the boundaries to lie in the same positions, nor do we expect the detailed 
structure of the phase diagram necessarily to be~the same. Since, for A’, the p = 2 case gives 
the Hopfield network, it does not provide auseful toy model. Our ability to treat the model 
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analytically is therefore confined to calculating the stability of the trivial and symmetric 
fixed points and calculating the temperatures at which the symmetric and antisymmetric 
fixed points become solutions of the dynamics. 

We confine our discussion to parallel dynamics for the reasons given in the previous 
section. 

4.1. Analytic results for p > 2, parallel d y m i c s  

The eigenvalues of A‘ with respect to the basis In) are 

We first attempt to discover the region in which the trivial fixed point will be the only 
atuactor of the dynamics, using stability and bifurcation analysis. As before, a bifurcation 
from the trivial fixed point can only b e  in the direction of the symmetric or antisymmetric 
fixed point. The bifurcation temperatures are, respectively, 

Tbif = V C o ,  V C p f z .  (34) 

These provide a lower bound on the paramagnetic phase. 

stability of the trivial fixed point we require 
Next we look at the stability properties of the trivial fixed point. Since r(6) = C, for 

(35) max lailc,, < T . 
n 

This leads to the following result: 

For v < vc&) = *, the condition for stability is 

(1 - t,P)(l - t:) 
T > qld = [ ( I + t ; ) ( l + t ~ ~ - 2 t j k )  ] [v’ + (1 - v2)[1 - k2]]”* 

where k e cos(%) = (,-&+t,2), this gives the n that maximizes the LHS of the 
inequality (35). 

P 
.~ 

For v > v,a. the condition for stability is 

T > C O V  (37) 

and the maximizing value of n is 0, corresponding to an instability in the direction of 
the symmetric fixed point. 

In the uncorrelated case, vcdr = 1 and the trivial fixed point becomes unstable at T = 1 for 
parallel dynamics. The maximizing value of n will only be zero at v = 1. For any other 
value of v the trivial fixed point becomes unstable in a direction other than the direction of 
the symmetric fixed point. In the correlated case, for v > vcdr the trivial fixed-point will 
go continuously to the symmetric fixed point as T is lowered. When v < v d r  the trivial 
fixed point becomes unstable in some other direction. The results of evaluating the above 
condition for p = 10 are shown in figure 6(a). 

We now look at the stability properties of the symmetric fixed point. The condition (22) 
for stability results in the final condition 
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Figure 6. Regions where (a)  the uivial fixed point and (b)  the symmetric fixed paint are stable 
(S) and unstable (U). found analytically for p = 10 under parallel dynamics. for c = 0 (full 
curve), 0.2 (dolted curve), 0.4 (short-broken curve). 0.6 (long-broken curve). 0.8 (chain curve). 
In (a), the full circles mark the point (w.,j,) where the trivial fixed point goes from becoming 
unstable in the direction ofthe symmetric fixed point (above the full circle) to becoming unstable 
in some other direction (below the full circle). 

where 

q+ = (XO tanh[guq+xol). 

This too can be solved numerically and the results are displayed in figure 6(b). Interestingly, 
although the lines of stability for the symmetric and trivial fixed points coincide for some 
(low) values of v and c, the point at which they separate is not the point at which the trivial 
fixed point becomes unstable in the direction of the symmetric fixed point. This implies 
that there is an area of the phase diagram in which the symmetric fixed point is a stable 
solution of the dynamics but the trivial fixed point will not become unstable in its direction, 
in contrast to the behaviour of the previous model. 

Finally, we obtain an upper bound on the region in which recall behaviour is possible 
by calculating the temperature at which the antisymmetric fixed point becomes a possible 
fixed-point solution to the dynamics. This is found to be v c P p  

4.2. Numerical results for p = 10, parallel dynamics 

We now present results obtained by numerical iteration of the macroscopic laws (3). As 
before, the behaviour of the network could be classified as R, C, S or P. As expected, we 
found no R’ region; there also proved to be no C’ region. The phase diagram is displayed 
below (figure 8). However, in this case the behaviour in the C region was strikingly 
different from the behaviour in the previous section. We first describe this behaviour and 
then describe the phase diagram. 

At low T there were multiple stable asymptotic values for Qd (shown in figure 7(a)) 
when the system was started from random initial states. This contrasts with the previous 
case where the final values of Q d ,  Q, and P were independent of the initial states. 
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Figure 7. (a) Asymptotic values of Q d  for systems s w e d  from random states for p = 10, 
Y = 0.2, T = 0.01. For 0.25 c c c 0.8 there are. in general, multiple possible asymptotic values 
of Q d .  However, the tendency is for Qd to increase with c until c - 0.4 and then decrease. (b) 
Q d  (lower curves) and P (upper curves) for p = IO. Y = 0.2, T = 0 (full curve), 0.25 (dotted 
curve), 0 5  (short-broken curve), 0.75 (long-broken curve), L (chain curve), The C U N ~ S  for P 
me curtailed when Q d  + 0 as then there is no periodic behaviour. The discontinuities in P for 
T = 0 are due to there being multiple xymptotic values of P; we were unable to find a way 
to ensure that the system ended up with one value rather than another. The c w e s  displayed 
here were obtained by s w i n g  the system in the pure state; the results obtained by starling the 
system in random states display the same features. 

1 _ _  _ _ _ _  _- _- ml _ _ _ - - -  ~. .............. 

.. 0.9 _.I' .......... . . .  

Figure 8. (a) The retrieval region R of the phase d i a g "  for p = 10 and parallel dynamics. 
The curves of constant temperature divide the graph into the region where the pure slate will go 
to a non-symmetric Hopfield-like fixed point (R) and the region where it will go to a limit cycle 
(C). The lines are at (going from C to R) T = 0.0.25.0.5.0.75. (b) The limit-cycle region 
C for p = 10, shown as a function of (U. e) for T = 0.25.0.5.0.75. 1.0. In the region S the 
system goes to the symmetric fixed point; in the region P, for T = 1. it goes to the trivial fixed 
point from a pure initial state. At T = 0 there is no S region; c,, = I .  

As T increases, there is a decrease in the range of c for which this multiplicity of 
states exists, and a decrease in the number of states at any given c. Even at low T ,  as 
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figure 7(a) illustrates, this multiplicity of states d&s not prevent the emergence of the 
general trends, as follows. 
At fixed values of T and U, increasing c no longer causes a monotonic decrease in Q d .  
Instead, as c increases, Q d  initially increases too. At high values of T or low values of 
v it peaks twice, with the second peak at a considerably ,higher value of QJ than that 
obtained for c = 0, before decreasing (as we would expect) to 0. This behaviour is ilius- 
trated in figure 7(b), which also shows how this ‘two-hump’ effect is more pronounced 
at high T .  The ‘two-hump’ effect is mirrored in the behaviour of the period P. 
The period displays an abrupt change in behaviour with increasing c. For c c ccdr, P 
is roughly constant. Above c,m, P increases sharply and thereafter varies slightly with 
increasing c, first increasing and then decreasing. 
c&, as defined h&e corresponds almost exactly to the value of c at which the minimal 
value of Q d  between the two humps first becomes 0. Around this value of c there is 
an oscillation in the envelope of the q,,’s as a function of time. At values of c much 
higher or lower than this, the envelope of the q,’s is relatively constant with time. 

We see that there are two separate Limit-cycle solutions to the dynamics, one of which 
exists at high c and one of which exists at low c. The amplitudes ofthese solutions depend 
on c and T; at high T the ranges of c within which these amplitudes are non-zero and do 
not overlap, while at low T an overlap occurs, causing the oscillation in the envelope of 
the qp’s with the corresponding beat frequency. 

As stated in the introduction, the most interesting behaviour of the network is a stable 
cycle with a large amplitude of oscillation. The increase of Qd with c prompts us to 
investigate whether increasing the correlations genuinely increases the extent to which the 
network distinguishes between pattems in the sequence. As was pointed out in the previous 
section, Q d  can be increased by increasing the span of the distribution of q p ’ s ,  defined as 
(ma, q,, - min, q,,), but it can also be increased by increasing the tendency of the q,,’s to 
‘cluster’ at their extreme values. If we look at the span as well as Q d ,  we can say that for 
two distributions of q,, with the same Q d ,  the better performance is given by the system 
with a greater span. We do not display explicit results here for reasons of space, but the 
general findings are as follows. 

For low c o r  low T, increasing c will not increase the span. If an increase in Q d  occurs 
it is therefore due to increased clustering. We also observe that at low c, Qs is also small, 
implying that the q,,’s oscillate around 0 and that the system is not distinguishing between 
those pattems with large negative q, and those with large positive q,,. For intermediate 
values of (v. T, c), however, we find that an increase in Qd is usually matched by an 
increase in the span. This is coupled with a non-zero value for Q,. In practice, this means 
that we have limit-cycle behaviour in which one pattern has q,, - 0.8, another has q,, - 0, 
and the others are spread between them without too much clustering.  in this region we 
can say that, paradoxically, the introduction of correlations genuinely causes the network to 
distinguish better between pattems. 

We conclude by presenting the phase diagram for the network with p = 10. We do so 
in three parts. Figure 8(a) shows the border of the retrieval phase R as a function of c and 
w for various values ‘of T. As can be seen, for each value of T there is a v at which c,, 
increases abruptly. Above this v we find there is no limit-cycle behaviour if the network is 
started in the pure state; this is a region of Hopfield-like behaviour. 

Figure 8(b) shows the border of the limit-cycle region as a function of (c, v) for various 
values of T. Figure 9 shows the region of stability of the symmetric fixed point as a function 
of ( v ,  T) for various values of c, for ease ofcomparison with figure 6(b). The agreement 

~~ 
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Figure 9. The regions in which the symmetric fixed-point 
is stable (S) and unstable (U), oblained numerically for 
p = 10 and shown as a function of ( w .  T) for c = 0 

- _  
(circles), 0.2 (full triangles), 0.4 (full squares), 0.6 (open 
triangles), 0.8 (open squares). This is to be compared with 

T figure 6(b). 

Figure 10. The phase diagram for the network for p = 10 
and c = 0.4, showing the retrieval region R (vertical 
shading, in the top left-hand comer of the diagram), the 
limit-cycle region C the region of coexistence of the 
symmetric fixed point and limit cycles C (diagonal shading, 

1 ~ 1.5 2 near T = 1). the symmetric fixed-point region S, and the 
T paramagnetic region P. 

between these two figures is good. Figure 10 is the overall phase diagram for the network 
with c = 0.4 and p = 10. 

5. Conclusions 

For a certain form of synaptic matrix-in a neural network designed to store sequences of 
patterns, it is possible to improve limit-cycle behaviour by introducing moderate correlations 
between the stored pattems. The behaviour is improved in that the difference between the 
largest and smallest overlap with any pattern is increased; the value of the largest overlap 
is increased, and the absolute value of the smallest overlap is moved closer to 0, and 
the system distinguishes adequately between consecutive pattems in the sequence. This 
behaviour depends strongly on the smcture of the synaptic matrix, and in the other case 
investigated the introduction of correlations served only to increase the tendency of the 
network to go to a state in which it does not distinguish between pattems at all. 

The above comments apply to parallel dynamics, although the small amount of research 
done into sequential dynamics suggests that broadly the same results will be obtained in 
this case. The research has also been restricted to investigation of binary neuron neural 
networks, and to pattems with an overall magnetization of zero. We are still, therefore, 
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a long way from any kind of biological realism. One further step could be to attempt to 
determine the storage capacity for a network storing large numbers of finitelength sequences 
of patterns. This will be the subject of a future paper. 
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